在这项工作中,我们研究了在不确定性下的在线决策问题,我们将其制定为在信仰空间的规划中。在高维状态(例如,整个轨迹)上维护信仰(即,整个轨迹)不仅被证明可以显着提高准确性,而且还允许在主动SLAM和信息收集的任务所需的情况下规划信息理论目标。尽管如此,根据这种“平滑”范式的规划持有高计算复杂性,这使得在线解决方案具有挑战性。因此,我们建议以下想法:在规划之前,在初始信念上执行独立状态可变重新排序过程,并“推进”所有预测的环路关闭变量。由于初始可变顺序确定将受到传入更新影响的它们的哪个子集,因此这种重新排序允许我们最小化受影响变量的总数,并在规划期间降低候选评估的计算复杂性。我们称之为Pivot:预测增量变量订购策略。应用此策略也可以提高国家推理效率;如果我们在规划会议后维持枢轴令,那么我们应该同样降低循环闭合的成本,当实际发生时。为了展示其有效性,我们将枢轴应用于一个现实的主动Slam仿真中,在那里我们设法显着减少了规划和推理会话的计算时间。该方法适用于一般分布,并不能准确地损失。
translated by 谷歌翻译
在这项工作中,我们向不确定性的决策问题介绍了一种新的有效的解决方案方法,可以在一个可能的高维状态空间中作为信仰空间中的决策制定。通常,为了解决决策问题,根据一些目标,应该识别来自一组候选者的最佳行动。我们声称人们通常可以生成并解决类似的尚未简化的决策问题,这可以更有效地解决。明智的简化方法可以导致相同的动作选择,或者可以保证最佳状态最大损耗的方法。此外,这种简化与状态推断分离,并且不会损害其精度,因为所选动作最终应用于原始状态。首先,我们介绍了一般决策问题的概念,并为这一方法的连贯制定提供了理论框架。然后,我们几乎将这些想法应用于信仰空间中的决策问题,这可以通过考虑初始信仰的稀疏近似来简化。我们提供的可扩展信念稀疏算法能够产生保证与原始问题一致的解决方案。我们展示了方法在解决现实主动场所问题的解决方案中的好处,并设法显着降低计算时间,在解决方案的质量上没有损失。这项工作既有基础实用,又拥有众多可能的扩展。
translated by 谷歌翻译